首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6533篇
  免费   803篇
  国内免费   836篇
  2024年   13篇
  2023年   178篇
  2022年   126篇
  2021年   266篇
  2020年   314篇
  2019年   411篇
  2018年   309篇
  2017年   383篇
  2016年   350篇
  2015年   373篇
  2014年   389篇
  2013年   473篇
  2012年   269篇
  2011年   306篇
  2010年   280篇
  2009年   390篇
  2008年   406篇
  2007年   419篇
  2006年   306篇
  2005年   322篇
  2004年   250篇
  2003年   181篇
  2002年   206篇
  2001年   193篇
  2000年   161篇
  1999年   152篇
  1998年   120篇
  1997年   74篇
  1996年   75篇
  1995年   80篇
  1994年   52篇
  1993年   48篇
  1992年   47篇
  1991年   37篇
  1990年   42篇
  1989年   26篇
  1988年   21篇
  1987年   15篇
  1986年   20篇
  1985年   15篇
  1984年   21篇
  1983年   11篇
  1982年   13篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1975年   2篇
  1950年   1篇
排序方式: 共有8172条查询结果,搜索用时 218 毫秒
91.
Von Hippel and colleagues have highlighted the crucial role of users in innovation in different industries and types of products. They describe the innovation process in terms of the distinct domains of knowledge that producers and users possess. Producers have knowledge about technical solutions and users about their needs, the context of use, and their own capabilities as users. Both sets of knowledge are characterized by "stickiness": They move relatively freely within their own domain but are difficult to transfer outside of it.
In the case of radical innovations for sustainable consumption, the problem of "sticky information" is compounded. Both producers and consumers need to reach out of their conventional competencies and search for new solutions. "Societal actors," such as government bodies or environmental experts, can show the way to such solutions, but this new knowledge needs to be integrated with the "sticky" knowledge about everyday practices in production and consumption.
In the present article we attempt to conceptualize the role and interaction of user and producer knowledge with the knowledge of environmental experts in housing energy innovations. We do so by applying the user−producer interaction framework to a case study on the introduction of low-energy housing concepts in Finland. On the basis of this analysis, we draw conclusions on the potential and limitations of today's practices in the field. For example, we suggest that user involvement can help to enhance the acceptance of low-energy solutions but that the methods for involving users need to be adapted to the particular circumstances in each industry.  相似文献   
92.
Stream restoration has become a multibillion dollar industry worldwide, yet there are few clear success stories and the scientific basis for effective stream restoration remains uncertain. We compiled data on completed river restoration projects from four management authorities in Victoria, Australia, to examine how the available data could inform the science of restoration ecology in rivers, and thus improve future restoration efforts. We found that existing data sources are limited and much historical information has been lost through industry restructuring and poor data archiving. Examining records for 2,247 restoration projects, we found that riparian management projects were the most common, followed by bank stabilization and in‐stream habitat improvement. Only 14% of the project records indicated that some form of monitoring was carried out. It is evident that overall there is little scientific guidance and little or no monitoring and evaluation of the projects for which we had information. However, recent advances with mandatory, statewide reporting and an increased emphasis on project design and monitoring strongly suggest that the design, implementation, monitoring, and reporting of stream restoration projects have improved in recent years and will continue to do so.  相似文献   
93.
Summary A constructed urban wetland in Adelaide was surveyed 18 months and 10 years after construction to see how shoreline vegetation, soil electrical conductivity (EC), texture and pH changed over time and to provide data for future site management. Multivariate analysis detected four plant associations at 18 months: salt‐tolerant taxa on conductive clays; a weed‐dominated community on lower EC soil; and two smaller waterlogged, low EC clusters dominated by Common Reed (Phragmites australis) and Sea Club‐Rush (Bolboschoenus caldwellii), respectively. At 10 years, site cover and heterogeneity was higher, with the margins dominated by Phragmites and salt‐tolerant species. EC was much lower and more uniform, and the soils were heavier and more alkaline. Managed storm water flushing apparently lowered soil EC, but possibly also disturbed the shoreline. However, weeds were still common, and the potential for domination by Phragmites at the expense of other native shoreline species means that ongoing monitoring and hydrological and vegetation management are essential to maintain site habitat diversity.  相似文献   
94.
Many animal species attempt to enhance their environments through niche construction or environmental engineering. Such efforts at environmental modification are proposed to play an important and underappreciated role in shaping biotic communities and evolutionary processes. 1 , 2 Homo sapiens is acknowledged as the ultimate niche constructing species in terms of our rich repertoire of ecosystem engineering skills and the magnitude of their impact. We have been trying to make the world a better place—for ourselves—for tens of thousands of years. I argue here that it is within this general context of niche‐construction behavior that our distant ancestors initially domesticated plants and animals and, in the process, first gained the ability to significantly alter the world's environments. The general concept of niche construction also provides the logical link between current efforts to understand domestication being conducted at two disconnected scales of analysis. At the level of individual plant and animal species, on one hand, there recently have been significant advances in our knowledge of the what, when, and where of domestication of an ever‐increasing number of species worldwide. 3 At the same time, large‐scale regional or universal developmental models of the transition to food production continue to be formulated. These incorporate a variety of “macro‐evolutionary” causal variables that may account for why human societies first domesticated plants and animals. 4 , 5 This essay employs the general concept of niche construction to address the intervening question of how, and to connect these two scales of analysis by identifying the general behavioral context within which human societies responded to “macroevolutionary” causal variables and forged new human plant or animal relationships of domestication.  相似文献   
95.
Abstract We propose a rapid sampling method to assess the functional composition of herbaceous plant communities without prior knowledge of the floristic composition. To determine the community‐level value of traits (‘aggregated trait values’) for a plant community, a standardized population‐centred method exists, but requires substantial manpower and reliable botanical knowledge. We tested an alternative method, the trait transect, using four subalpine pastures in the Beaufortain region (Northern French Alps) selected along a fertility gradient. We applied both methods to measure five commonly used ‘soft traits’ known to be responsive to soil nutrient availability: plant vegetative and reproductive height, specific leaf area, leaf dry matter and nitrogen contents. We tested whether the variation of these traits along the gradient detected with the population‐centred method was also detected with the trait transect. Both methods detected expected trends in the traits in response to the fertility gradient. The trait transect method was as efficient as the population‐centred method and is recommended as an appropriate tool for monitoring ecosystem changes in response to environmental conditions and management, especially in species‐rich communities.  相似文献   
96.
Streamflow-related variability in nutrient flux represents an important source of uncertainty in managing nutrient inputs to coastal ecosystems. Quantification of flux variability is of particular interest to coastal resource managers in adopting effective nutrient-reduction goals and monitoring progress towards these goals. We used historical records of streamflow and water-quality measurements for 104 river monitoring stations in an analysis of variability in annual and seasonal flux of nitrate to the Atlantic coastal zone. We present two measures of temporal flux variability: the coefficient of variation (CV) and the exceedence probability (EP) of 1.5 times the median flux. The magnitude of flux variations spans a very wide range and depends importantly upon the season of year and the climatic and land-use characteristics of the tributary watersheds. Year-to-year variations (CV) in annual mean flux range over two orders of magnitude, from 3–200% of the long-term mean flux, although variations more typically range from 20–40% of the long-term mean. The annual probability of exceeding the long-term median flux by more than 50% (EP) is less than 0.10 in most rivers, but is between 0.10 and 0.35 in 40% of the rivers. Year-to-year variability in seasonal mean flux commonly exceeds that in annual flux by a factor of 1.5 to 4. In western Gulf of Mexico coastal rivers, the year-to-year variablity in the seasonal mean flux is larger than in other regions, and is of a similar magnitude in all seasons. By contrast, in Atlantic coastal rivers, the winter and spring seasons, which account for about 70% of the annual flux, display the smallest relative variability in seasonal mean flux. We quantify the elasticity of nutrient flux to hypothetical changes in Streamflow (i.e., the percent increase in flux per percentage increase in mean discharge) to allow the approximation of flux variability from streamflow records and the estimation of the effects of future climatically-induced changes in Streamflow on nutrient flux. Flux elasticities are less than unity (median = 0.93%) at most stations, but vary widely from 0.05% to 1.59%. Elasticities above unity occur most frequently in the largest rivers and in rivers draining the arid portions of the western Gulf of Mexico Basin. Historical flux variability and elasticity generally increase with the extent of arid conditions and the quantity of nonurban land use in the watershed. We extend the analysis of flux variability to examine several case studies of highly unusual meteorological events capable of significantly elevating nitrate flux and degrading estuarine ecology.  相似文献   
97.
The southern root-knot nematode, Meloidogyne incognita, is the most damaging pathogen of cotton in the United States, and both resistance and tolerance to M. incognita could be valuable management approaches. Our objectives were to evaluate advanced cotton breeding lines for resistance and tolerance to M. incognita and to determine if a relationship between resistance and tolerance exists. Reproduction of M. incognita was evaluated on 17 breeding lines, a susceptible control (Delta and Pine Land DP5415), and a resistant control (M-120) in two greenhouse trials with six replications in a randomized complete block design. Two-week-old seedlings were inoculated with 8,000 M. incognita eggs and assessed for egg production 8 weeks later. Reproduction on the resistant control was only 10% of that on the susceptible control. Eight breeding lines supported 45% to 57% less (P <= 0.05) nematode reproduction than the susceptible control, and none of them were as resistant as M-120. Yield was determined in 2001 and 2002 in fumigated (1,3-dichloropropene at 56 liters/ha) and nonfumigated plots in a strip-plot design with three replications in a field naturally infested with M. incognita. Yield suppression caused by nematode infection differed among genotypes (P ≤ 0.05 for genotype × fumigation interaction). Six genotypes in 2001 and nine in 2002 were tolerant to M. incognita based on no difference in yield between the fumigated and nonfumigated plots (P ≥ 0.10). However, only three genotypes had no significant yield suppression in both years, of which two also were resistant to M. incognita. Regression analysis indicated that yield suppression decreased linearly as nematode resistance increased.  相似文献   
98.
Abstract: Management and conservation of large carnivores increasingly includes conflicts with humans. Consequently, a greater understanding of spatiotemporal trends of conflicts is needed to efficiently allocate resources and apply targeted management. Therefore, we examined spatial and temporal distribution of American black bear (Ursus americanus; hereafter, bear)-human conflicts in Colorado, USA, related to 3 conflict types (agriculture operations, human development, and road kills). We used the Getis-Ord Gi* spatial clustering statistic to describe location and assess magnitude of bear-human conflicts in Colorado during 1986–2003 and investigated temporal trends of bear-human conflicts by type. Bear-human conflicts showed distinct spatial clustering by type, and areas of high clustering overlapped conflict types. Clustering for agriculture operations conflicts had the largest overall Gi* value and overlapped counties with high sheep production. Both human development and road-kill conflict clusters were high in areas of high-quality oak (Quercus spp.)—shrub habitat in the central and southern portions of Colorado's Front Range region and near the city of Durango in southwestern Colorado. Bear-human conflicts varied by year and type but overall increased during the 18 years. Summed across years, most conflicts were related to agriculture (32%), followed by road kills (27%) and human development (24%). The greatest proportion of agriculture operations-related conflicts (76%), human development-related conflicts (36%), and road kills (47%) occurred in 1988, 1999, and 2003, respectively. Considering that bear-human conflicts in Colorado increased over time and will likely continue to increase, we suggest wildlife managers improve data collection by obtaining detailed location data, categorizing conflict types uniformly, and applying conflict regulations consistently to strengthen inference of similar analyses. We also suggest that managers target efforts to mitigate damage by focusing on areas with high clustering of conflicts.  相似文献   
99.
100.
Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species‐based Dynamic Bioclimate Envelope Model (DBEM) with a size‐based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness‐of‐fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter‐specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号